Hydrochemistry & quality assessment of ground water in Padampur tehsil area of Sri Ganganagar district, Rajasthan, India.

Seema Koushal

Research Scholar, Department of Chemistry, Tantia University, Sri Ganganagar, Rajasthan (INDIA) seemakoushal.rs@gmail.com

Abstract

Hydro chemical analysis of ground water samples collected from various selected locations of Padampur tehsil area of Sri Ganganagar district during four seasons (pre-monsoon, post-monsoon, winter and spring) was taken as research work to analyze the level of hydro chemical parameters of contaminated groundwater of selected area, the samples were collected as per standard procedure from hand pumps used watering in bulk for drinking use, and analyzed to determine various hydro chemical parameters viz. pH, EC, TDS, TA, TH, Ca, Mg, Na, K, CO3, HCO3, F and DO, BOD, COD, Cl2, F, NO3, SO4 and heavy metals in collected samples, by standard methods prescribed for the purpose. High concentration of hydrochemical parameters in ground water may be the reason of various water borne diseases. Hence this research work was under taken to aware about the facts to the public and responsible agencies to take pollution control measures in time at various essential levels.

Key words- Ground water, Ganganagar tehsil, Hydro chemical parameters.

Introduction

W

ater is known as foundation of all type of life.

Water is an vital natural resource for life of all humans, natural world on planet. All processes of life are connected directly or indirectly with water thus human beings cannot survive to a large extent without water, as water plays a innermost and significant role for every cell and organism in the human body to function appropriately. Water is accountable for each activity in individual body. In developing countries harmless and plenty drinking water supply is a fundamental issue in rural and in lots of urban areas¹.

In rural areas groundwater is a consistent and limited source of water. The most frequent sources of water for irrigation and different purposes are outside water and groundwater. Ground water and outside water are connected interiorly. The surface water is available in the form of oceans, streams, rivers, ponds and lakes on the surface of earth and the groundwater is available beneath the earth.

Groundwater is a fundamental source of water all over the world. Groundwater is extracted by a bore well or a tube well. Groundwater is a basic component of the water assets for domestic, industries, irrigation or drinking purpose. Groundwater is polluted from waste dumping sites, animal waste, leaking of underground storage tanks, industrial chemical waste, by broad agricultural lands used pesticides and fertilizers. Polluted groundwater can be inappropriate for different purposes and its remediation is almost not possible or time-consuming and costly. It may be injurious for human health as well as environmental health.²

Groundwater is contaminated when it hold enough impurities to make it unhealthy for deliberate use. Contamination of groundwater may be natural or it may be human induced. Human doings affects the normal composition of groundwater. Groundwater pollution occurs owing to the presence of unnecessary constituent, and adulteration in the groundwater. Use of unhygienic groundwater causes health problems to people; thus it is important to test the behavior that distresses the quality and quantity of groundwater. Groundwater is usually used for drinking purpose in rural area³.

Material And Methods

The Study Area:

Sri Ganganagar district is situated in the northernmost part of Rajasthan State, positioned between 29.903839 Latitude and 73.877190 Longitude, being a plain region of Thar Desert land,

Aayushi International Interdisciplinary Research Journal (AIIRJ)

		JUNE	2022	PEER REVIEW	IMPACT FACTOR	ISSN
VOL- IX	ISSUE- VI	JUNE	2022	e-JOURNAL	7.331	2349-638x

near International Pakistan border. It is surrounded by Ferozepur district of Punjab State and Hanumangarh and Bikaner district of Rajasthan State. It has 16 towns and 3018 villages. Out of its nine tehsils: Anupgarh, Gharsana, Karanpur, Padampur, Raisinghnagar, Sadulshahar, Ganganagar, Suratgarh and Sri Vijaynagar in this district, we have selected Padampur tehsil for this research work, as in the rural area of this tehsil, ground water is also widely used for drinking purpose.

Collection and analysis of water samples:

To analyze the parameters of contaminants in groundwater of selected area, ground water samples were collected from different four villages of this tehsil i.e. Sawantsar, Ghamurwali, Chanhanadham and Fakirwali, where the people use ground water in bulk for drinking purpose. Samples were collected in four seasons i.e. pre- monsoon, post-monsoon, winter and spring, throughout the year 2019-2020, for evaluation and characterization of their hydro chemical properties. All the collected ground water samples were analyzed by using standard methods mentioned in book "Standard methods for the examination of water and wastewater, 17th edition, 1989, which is prepared and published jointly by American public health Association (APHA)4, 5, and water pollution control federation (WPCF) and American water works association (AWWA). 6

Result And Discussions

The hydrochemistry and quality analysis of hydro chemical parameters of ground water samples of five villages of Padampur tehsil of Sri Gangbanger district for the year 2019-20 during four seasons (premonsoon, post-monsoon winter and spring) are shown in Table no - 1 and Table No. 2, heavy metals and of some other chemical parameters are shown in Table No - 3 and Table No-4

Ta	Table-1 Hydrochemistry parameters results of ground water of Padampur Tehsil													
S. N	LocatiSeaspETTHTCononHCDACHa2													
•					S		O ₃		+					
1	Sawan	Pre	7.	23	15	98	11	12	43					
	t Sar	mon	64	0	5	.3	7	0						
	Longit	soon												
2	ude	Post	7.	21	14	97	12	11	46					
	73.596	mon	41	0	8	.8	3	5						
	Latitud	soon												
3	e	Win	7.	21	15	98	11	11	44					

J	OURI	NAL		7.3	31			2349	-638	x
		29.725	ter	61	5	2	.3	9	8	
	4		Spri ng	7. 63	21 5	15 2	98 .3	11 8	11 6	45
	5	Gham	Pre	7.	15	70	 98	12	14	12
	5	urwali	mon	69	10	8	.3	0	0	0
		Longit		07	10	0	2	0	0	0
	6	ude	soon	7.	14	69	2 97	12	13	12
	0	73.775	Post						15 5	
			mon	52	90	5	.8	5	Э	2
	-	Latitud	soon	_			2	10	10	
	7	е 26.676	Win	7.	15	69	98	12	13	11
		20.070	ter	65	03	6	.3	1	8	9
	8		Spri	7.	15	69	98	11	13	12
		Sec. 1	ng	68	07	6	.3	9	6	1
							1			
5	9	Chana	Pre	8.	25	17	32	12	16	48
		nadha	mon	14	5	6	9	9	0	
		m	soon							
	1	Longi	Post	8.	24	17	32	13	15	50
	0	73.626	mon	09	7	3	6	5	5	
		Lati	soon							
	1	29.707	Win	8.	25	17	32	13	15	47
	1		ter	11	4	5	7.	1	8	
					3		8			
	1		Spri	8.	25	17	32	13	15	49
	2		ng	11	4	5	7.	0	6	
			_				8			
	1	Fakirw	Pre	7.	31	21	67	16	17	52
4	3	ali	Mon	35	4	4	.9	6	0	
		Longit	soon		7		9			
	1	ude	Post	7.	30	20	67	17	16	54
	4	73.684	mon	32	0	7	.4	2	5	
		Latitud	soon				9			
	1	е	Win	73	30	21	67	16	16	51
	5	29.619	ter	32	8	1	.9	8	8	
	-					-	7	÷		
	1		Spri	7.	30	21	67	16	16	53
N	6	224	ng	35	8	1	.9	7	6	
C		30'	8				8			
-		Mir		7.	21	14	67	11	11	43
8		Concen		32	0	8	.4	7	5	
			m			-	9			
		Max	X.	8.	15	70	32	17	17	12
		concent		14	10	8	9	2	0	2
		Avera		7.	60	32	15	13	14	68
		concent		67	2.	2.	3.	6.1	4.	.2
				1	2	2	6		5	8

Tal	Table-2 Hydrochemistry parameters results of ground water of Padampur Tehsil												
S.	Locati Seas M N K ⁺ Cl S N F ⁻												
Ν	on	on	g ₂	a +		-	O 4	O 3					
			+				2-	-					
1	Sawant	Pre	4.	29	5.	28	48	7	0.				
	Sar	Mon	2		8				24				
	Longi	soon											
2	73.596	Post	7.	31	5.	30	51	9	0.				
	Latit	Mon	2		75				25				
	29.725	soon											

Email id's:- aiirjpramod@gmail.com Or aayushijournal@gmail.com Chief Editor: - Pramod P. Tandale (Mob.08999250451) website :- www.aiirjournal.com Page No. 90

Aayushi International Interdisciplinary Research Journal (AIIRJ)

Aayushi International Interdisciplinary Research Journal (AIIRJ)																					
voi	- IX	ISSUE	- VI	JUNE			2	2022			R RE OUR		I		T FA .331		R	:	159 2349-		x
3		Win ter	5. 2	28	5. 78	27	49	7. 6	0. 26		2	Ghamu rwali	6. 2	2	5. 2	0. 1	N D	N D	0. 1	N D	0. 0
4		Spri	6. 2	30	5. 79	29	50	8	0. 23		3	Chanan	5.	1.	6	1	N	N	5 N	N	9 N
5	Ghamu	ng Pre	59	87	4.	42	15	8	0.			adham	1	5		1	D	D	D	D	D
	rwali Longi	Mon soon	.7		8	6	8. 9		41		4	Fakirw ali	6. 1	2	3. 6	0. 0	N D	N D	N D	0. 0	N D
6	73.775 Latit.2 6.676	Post Mon soon	62 .7	90	4. 75	42 8	16 0. 9	10	0. 42			Averag e	6. 0	2. 3	4. 55	6 0. 0	N D	0. 0	0. 1	1 0. 0	0. 0
7		Win ter	60 .7	88	4. 78	42 5	15 7. 9	8. 2	0. 43			Minim um	3 5. 1	1. 5	3. 4	9 0. 0	N D	1 0. 0	3 0. 1	1 0. 0	5 0. 0
8		Spri ng	61 .7	89	4. 79	42 7	15 9. 9	9	0. 4	dis		Maxim um	6. 7	3. 7	6	6 0. 1 1	N D	1 0. 0 1	0. 1 5	1 0. 0 1	1 0. 0 9
9	Chana nadha m	Pre Mon soon	11 .7	20 .5 6	5. 9	35	53	4	0. 29								_				
1 0	Longi 73.626	Post Mon	14 .7	23 .5	5. 85	37	55	36 water of Padampur Tensil										U	ind		
1	Latit 29.707	soon Win	12	6 21	5.	34	52	5	0.		S. N	Lo	ocatio	n		A	Dat L	a Inte	rpreta S	tion R	Е
1	29.101	ter	.7	.5 6	3. 88	34	32	5	0. 31		0.					I	SI	% N a	S A R	K S C	S P
1 2		Spri ng	13 .7	22 .5 6	5. 89	36	54	6	0. 28		1	Longi.	vant \$ 73.59 9.725	6 Lati		1 3. 3	0. 7	59 .1	4. 44	2. 04	5. 0 6
1 3	Fakirw ali Longi7	Pre Mon soon	11 .7	25	7. 4	27	50	7	1. 57		2	Ghamu 73.775				1 2. 7	0. 2 1	58 .2	4. 14	3. 13	4. 6 6
1 4	3.684 Latit 29.619	Post Mon soon	14 .7	27	7. 35	30	52	9	1. 58		3		Chananadham Long. 73.626 Lati. 29.707				0. 0 6	62 .6	4. 76	3. 49	5. 4 7
1 5		Win ter	12 .7	24	7. 38	28	49	6	1. 57		4	Fakirv 73.684			9	6 1 2.	0. 0	68	5. 48	4. 1	6. 4
1 6		Spri ng	13 .7	26	7. 39	29	51	8	1. 56	349	6	381	verag	-		5 1	<u>7</u> 0.	62	4.	3.	2 5.
-	Miı Concen	n.	4. 2	20 .5	4. 75	27	48	4	0. 23			conce				1 2. 8	2 6		- 1 . 71		4
	Ma		62	6 90	7.	42	16	10	1.		rn	Mi	nimu ntra			1 2.	0. 0	58 .2	4. 14	2. 04	4. 6
	concent		.7	70	4	8	10 0. 9	10	1. 58	00	11	0.	ximu			2. 5 1	6 0.	.2 68	5.	4.	6 6.
	Avera		24 .4	42 .9	5. 96	14 0.	9 81 .1	7. 37	0. 66			conce				1 3. 3	0. 7	00	3. 48	4. 1	0. 4 2
	concent	. unon	5	3	8	0. 6	.ı 4	8	5							-					-

Та	Table-3 Hydrochemistry parameters results of ground water of Padampur Tehsil												
S.	Locatio	Pa	ramet	ers		Trac	e He	avy N	Aetal				
N 0.	n	D O	B O D	C O D	F e	C d	C u	Z n	M n	P b			
1	Sanwat Sar	6. 7	3. 7	3. 4	0. 0 8	N D	0. 0 1	0. 1	N D	0. 0 1			

As per hydro chemical data analysis results of Padampur tehsil water samples,. shown in above Table No. 1 to 4, parameters TDS (25%), Chloride (75%), Sulphate (100%), TH (75%), CA (75%), Mg (75%), NO₃ (100%), F (25%) and EC (75%) were found within acceptable limit. As well as TDS (75%), Chloride (25%), TH (25%), CA (25%), Mg25% and F (25%) were found withiu permissible limit. Only

	Aayushi I	nternationa	l Interdis	ciplinary	Research	Journal (AIIRJ)
VOL- IX	ISSUE- VI	JUNE	2022	PEER REVI e-JOURN		PACT FACTOF 7.331	-	ISSN 2349-638x

the concentration of F (25%) parameter was found beyond the prescribed limit.

Conclusion

As per IS standards 10500 maximum concentration of fluoride in drinking water is 1.50 mg/L, only the concentration of Fluoride (25%) parameter was found beyond the prescribed limit in the ground water samples collected and analyzed from Padampur tehsil. Drinking water having low concentrations in Fluoride can prevent tooth decay, but on the other hand higher concentrations of Fluoride may be harmful to human health. It may create crippling skeletal fluorosis. Fluoride is found as natural element of rocks. In normal water the major sources of fluoride are Fluorites (CaF₂), Fluorapatite, Cryolite (Na₂AlF₂). Food consumed in the diet is also considered as main source of fluoride. High fluoride cluster is originate in Tea Fluoride can strengthen and re-mineralize the teeth damaged enamel, can make it more resistant to decay. This is the reason to add fluoride to public drinking water, toothpaste and mouthwash. Grapes, Raisins, Spinach, black tea, potatoes are natural sources of Fluoride.

Recommendations and Suggestions:

Measures to be adopted to control the Ground water contamination:-

- 1. The sources creating pollution should be managed properly. Landfills should be designed properly with the use of clay and leachates. Maintance should be done regularly. Keep landfills locations far from the groundwater areas.
- 2. Dumping of any Harmful waste should never be dumped in the landfills area.
- 3. Pretreated thr ground water to less health threats.
- 4. Government and non-government Organization of People Awareness Campaigns by Government organizations and NGQs.
- 5. Being a main source of groundwater contamination, fertilizers and pesticides use should be monitored regularly.

References

- **1** Aravinda H B, Correlation coefficient of some physic-chemical parameters of river Tungabhadra, Karnataka, Pollution research, 17(4),371- 375, 1991.
- 2 Chatterjee R, Gourab T and Paul S, Groundwater quality assessment of Dhanbad district, Jharkhand, India, Bulletin of Engineering Geology and Environment, 69(1), 137-141, (2009).
- 3 Chhatwal Gurdeep Raj, Advanced Physical Chemistry, Goel Publishing house, Meerut (2002).
- 4 Agrawal V and Jagetia M, Hydrogeo-chemical assessment of ground water quality in Udaipur City, Rajasthan, India, 151-154, 1997.
- 5 Almasri M N and Kaluarachchi J J, Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J. of Hydrology, 295, 225-245, 2004.
- 6 Amaaliya N K and Kumar S P, Carried out ground water quality status by water quality index method at Kanyakumari, (INDIA), 2(9), 76-82,2013